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Abstract. We study model-based diagnosis and propose a new approach of hy-
brid diagnosis combining black-box and white-box reasoning. We implemented
and compared different diagnosis approaches including the standard hitting set
algorithm and new approaches using answer set programming engines (DLV,
Potassco) in the application of EULER/X toolkit, a logic-based toolkit for align-
ment of multiple biological taxonomies. Our benchmarks show that the new hy-
brid diagnosis approach runs about twice fast as the black-box diagnosis approach
of the hitting set algorithm.

1 Motivation and Related Work

Model-based diagnosis was studied extensively in many areas, such as type error debug-
ging, circuit diagnosis, OWL debugging, etc. Various approaches [17,7,3,15,2,14] have
been proposed to diagnose or debug errors. Most of these diagnosis approaches com-
pute minimal inconsistent subsets (a.k.a. diagnoses) and/or maximal consistent subsets.
A common element of all these approaches is that they use a routine isInconsistent as
a “black-box” to determine if a set of constraints is unsatisfiable. The best black-box
approach we know of is [14] which is a hybrid of the Logarithmic Extraction Algo-
rithm [2] and the Hitting Set (HST) Algorithm in [15].

The downside of these black-box approaches is that they do not look into the proof
itself that the reasoner may provide in the isInconsistent routine, which may potentially
lose some reusable information to reduce the number of invocations of reasoners. On
the other hand, various provenance approaches have been studied to provide deriva-
tions and proof trees, such as [13] which proposes an approach by adding annotations
to predicates to generate a provenance semiring of a derivation, Datalog debugging [16]
which proposes a provenance-enriched rewriting for debugging and profiling declara-
tive rules. Inspired by these provenance approaches, we introduce our own white-box
provenance approach to generate diagnosis proof trees for model-based diagnosis prob-
lem. Both approaches in [13] and [16] are not good at generating derivations of rules
with negations, whereas our white-box provenance approach works for rules with nega-
tions too. White-box and black-box approaches output different products. The idea of
inferring one from the other or combining both approaches is proposed in [18,4,10].
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We also propose a new hybrid approach which combines the black-box and white-box
approaches to obtain diagnoses.

Our white-box provenance approach and hybrid approach can be applied to general
model-based diagnosis problems which can be encoded in Datalog rules with negations
and aggregates. One interesting application of the new approaches is the inconsistency
analysis feature of EULER/X toolkit [6], a toolkit for logic-based taxonomy integration.
In EULER/X we use answer set programming (ASP) systems (DLV and Potassco) as
underlying reasoners. We implemented the existing black-box approach, our white-box
approach, and hybrid approach in EULER/X toolkit and compared them in the bench-
marks.

EULER/X. The problem of aligning multiple related biological taxonomies was stud-
ied and modeled in monadic first-order logic in the CLEANTAX project [20,19]. A
taxonomy is a containment (or isa) hierarchy with additional taxonomic constraints.
The EULER/X toolkit [6], a toolkit for logic-based taxonomy integration, builds on this
effort while utilizing additional and more time-efficient logic approaches such as an-
swer set programming [5]. EULER/X further more provides diversified and interactive
workflow features leading to the identification and visualization of consistent merged
taxonomies. Under this approach an expert initiates the process of aligning two related
but different taxonomies (T1, T2) by providing a set of articulations A and a set of
taxonomic constraints TC.

Jointly these input conditions – T1, T2, A, and TC – can generate various and poten-
tially inter-dependent instances of inconsistency; and thus a failure to yield consistent
alignments and visualizations. When asserting the initial articulations experts will fre-
quently make mistakes for various reasons; including (1) human error in information
entry or transcription, (2) a failure to understand transitive interdependencies among
input articulations, (3) incorrect accounting for low-level (child) concepts in relation to
parent concepts, (4) unwarranted violations of one or more taxonomy constraints, and
(5) other forms of logically inconsistent input. Each kind of error will yield a logically
inconsistent alignment, where one input condition is somehow in contradiction with
one or more additional conditions. Repair of such errors is needed, however the native
ASP reasoner output is virtually unreadable by humans, offering little comprehension
why the inputs are inconsistent and what cause the inconsistency. In order to identify
and remedy these problems, it is critical to “isolate” local sources of inconsistency that
are particularly relevant to facilitating the desired repair action from the global incon-
sistency phenomenon. To this end the EULER/X toolkit provides a novel Inconsistency
Analysis feature which motivates the investigation of different diagnosis approaches.

Contributions. This paper proposes a new hybrid diagnosis approach combining black-
box and white-box reasoning. Our white-box provenance approach records the prove-
nance of rules with or without aggregates. We have implemented different black-box,
white-box, and mixed approaches for generating diagnoses, and diagnosis proof trees
in the application of EULER/X toolkit using ASP systems for constraint solving and
reasoning. We also show in the benchmarks that our hybrid approach runs much faster
comparing to the existing best black-box approach of hitting set algorithm for generat-
ing all diagnoses.
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2 Background

A system is a pair (SD,C) where the system description SD is a set of fixed sentences
(assumed to be true), and C is a set of constraints (which the user wants to be true,
but which might be inconsistent with SD). C0 ⊆ C is called a Minimal Inconsistent
Subset (MIS ) of (SD,C) if (i) SD ∪ C0 is inconsistent and SD ∪ C′ is consistent
for any proper subset C′ � C0. Conversely, C0 ⊆ C is called a Maximal Consistent
Subset (MCS ) of C if SD ∪ C0 is consistent and there is no other consistent C1 with
C0 � C1 ⊆ C. We denote by MIS and MCS the set of all MIS and all MCS ,
respectively.1

Given a set C with n constraints, one can use “brute force” and find all diagnoses
by checking the consistency of all 2n subsets and prune the non-minimal ones. Often it
is unnecessary to check all combinations. For example, if we know a combination S is
inconsistent, then any superset of S is inconsistent as well, so we don’t need to check
those supersets. One the other hand, any subset of a consistent set is also consistent:

Fact 1. If a set of constraints is unsatisfiable in the system, any of its superset is unsat-
isfiable.

Fact 2. If a set of constraints is satisfiable in the system, all its subsets are satisfiable.

Actually, most of the existing black-box diagnosis approaches use these two facts. In
the next section, we will recap the best black-box approach [14] we know of which is a
hybrid of Logarithmic Extraction Algorithm [2] and combined with Hitting Set (HST)
Algorithm in [15].

3 Black-Box Approaches

We will first look at a black-box approach for generating all diagnoses – Horridge’s
approach [14] which uses Logarithmic Extraction Algorithm [2] as a subroutine in the
HST algorithm. Logarithmic Extraction Algorithm is to compute one single MIS which
is shown in Algorithm 1.

In Algorithm 1, depending on how we split F in line 3 of Function-1R, the time
complexity of this algorithm is different. In general, we split F by half and half. As
the name of this algorithm suggests, it calls isInconsistent log n times on average. In
the worst case (we always go to line 8 and 9 in Function-1R), it invokes isInconsistent
O(n) times. We have Lemma 1 which originates from [17] and is crucial for the idea of
computing all MIS .

Lemma 1. Denote by MIS(SD,C) all the MIS , and assume S = {s1, s2, . . . , st} is
a MIS , we have MIS(SD,C) =

⋃
1≤i≤t MIS(SD,C\{si}).

By this lemma, we get an algorithm to compute all MIS . However, it is ineffi-
cient if we don’t remember what has been computed and what has not since we are

1 MIS are also known as diagnosis [17], justification [14], minimal conflict sets [8], and minimal
unsatisfiable set [3]; MCS are a.k.a. maximal satisfiable set [3].
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Algorithm 1. Logarithmic Extraction
Input: System description SD, a set of constraints C
Output: One single diagnosis (MIS )

Function-1 ComputeSingleMIS(SD, C)
1: return ComputeSingleMIS(SD, ∅, C)

Function-1R ComputeSingleMIS(SD, S, F)
1: if |F | = 1 then
2: return F
3: SL, SR ← split(F )
4: if isInconsistent(S ∪ SL) then
5: return ComputeSingleMIS(SD, S, SL)
6: if isInconsistent(S ∪ SR) then
7: return ComputeSingleMIS(SD, S, SR)
8: S′

L ← ComputeSingleMIS(SD, S ∪ SR, SL)
9: S′

R ← ComputeSingleMIS(SD, S ∪ S′
L, SR)

10: return S′
L ∪ S′

R

likely to recompute something. For instance, to get MIS(SD,C\{c1}), we may
compute MIS(SD,C\{c1, c2}) which may be already computed when getting
MIS(SD,C\{c2}). We definitely need some caching optimization to avoid such a
case. {c1, c2} is called path when we compute MIS(SD,C\{c1, c2}). HST algo-
rithm [15] which we show in Algorithm 2 records all the paths it has already visited
(i.e. argument allpaths in ComputeAllMISHST), and will not visit them again.

In the worst case, ComputeAllMIS calls ComputeSingleMIS for Θ(2n) times.
Horridge et al. [14] proposed a mixed algorithm of HST algorithm [17] and Logrithmic
extractraction algorithm [2] to generate MIS , i.e., Algorithm 1 is a subroutine used in
the Algorithm 2 to compute one single MIS . This gives us the worst case time complex-
ity of O(2n) ∗O(n) ∗R(n) = O(n ∗ 2n) ∗R(n) where R(n) is the time complexity of
isInconsistent. We implement isInconsistent using Answer Set Programming, so R(n)
is as hard as ΣP

2 by [9]. Eiter and Gottlob [8] have pointed out the time complexity of
computing all diagnoses (i.e. MIS) is TRANS-ENUM-complete, which means there is
no efficient (polynomial time) algorithm to get MIS unless TRANS-ENUM had (but is
believed not) a polynomial time algorithm.

4 White-Box Provenance Approach

As mentioned in the last section, the best black-box approach calls isInconsistent
a (large) number of times to generate MIS , which seems not quite efficient.
isInconsistent routine is usually implemented using the underlying reasoner. Can we
get from the reasoner not only the yes/no answer? Can we call the reasoner once to
obtain all desired diagnoses?

We consider the diagnosis problem whose isInconsistent is implemented using an-
swer set programming system, and either a system description sentence or a constraint
is encoded as Datalog rules (with/without negation/aggregate). Inspired by the ideas of
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Algorithm 2. ComputeAllMIS (HST Algorithm)
Input: System description SD, a set of constraints C
Output: All diagnoses (MIS)

Function ComputeAllMIS(SD,C)
1: S, curpath, allpaths ← ∅
2: S ← ComputeAllMISHST(SD, C, S, curpath, allpaths)
3: return S

Function ComputeAllMISHST(SD,C,S,curpath,allpaths)
1: for path ∈ allpaths do
2: if curpath ⊇ path then
3: // Path termination without consistency check
4: return S
5: if not isInconsistent(SD, C) then
6: allpaths ← allpaths ∪ {curpath}
7: return S
8: J ← ∅
9: for s ∈ S do
10: if s ∩ curpath = ∅ then
11: // MIS reuse (saves recomputing a MIS )
12: J ← s
13: if J = ∅ then
14: J ← ComputeSingleMIS(SD, S)
15: S ← S ∪ {J}
16: for ax ∈ J do
17: curpath ← curpath ∪ {ax}
18: return ComputeAllMISHST(SD,C\{ax}, S, curpath, allpaths)

provenance semiring [13] and Datalog debugging [16], we propose a white-box prove-
nance approach which rewrites all the Datalog rules, records the derivation of inconsis-
tency which is a boolean expression, and generates an inconsistency proof tree using
the boolean expression. The basic idea of recording the derivation of inconsistency is to
first rewrite all the rules by adding annotations. For a rule without head (or false is the
head), NOK is added as the head which stands for “Not OK”, i.e., inconsistency. We
show the detailed Datalog rule rewritings as follows.

4.1 Non-aggregate Rule Rewriting

A rule r is safe if every variable in r must also occur positively in the body.

1. For any constraint rule with head predicate:

r1 : H1(Ȳ ) :−B1(X̄1), B2(X̄2), . . . , Bn(X̄n).
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We rewrite it by adding annotations for each predicate (including head and body
predicates) where Pi is the provenance of Bi(X̄i) for 1 ≤ i ≤ n, and we use ⊗ to
represent logical and2:

H1(Ȳ , r1 ⊗ (P1 ⊗ . . .⊗ Pn)) :− B1(X̄1, P1), B2(X̄2, P2), . . . , Bn(X̄n, Pn).

2. For any constraint rule without head predicate (i.e., false is the head):

r2 : false :−B1(X̄1), B2(X̄2), . . . , Bn(X̄n).

We rewrite it to a constraint with head predicate NOK where Pi is the provenance
of Bi(X̄i) for 1 ≤ i ≤ n and NOK stands for “Not OK”, i.e. inconsistency:

NOK(r2 ⊗ (P1 ⊗ . . .⊗ Pn)) :− B1(X̄1, P1), B2(X̄2, P2), . . . , Bn(X̄n, Pn).

We use a trick to get rid of non-safe rules: For any predicate V that has negation in
some rules, we add a complement predicate Ṽ for V , and add choice rules of “V (X̄) :−
not Ṽ (X̄), domain(X̄)” and “Ṽ (X̄) :− not V (X̄), domain(X̄)”.

4.2 Aggregate Rule Rewriting

Datalog rules in answer set programming could also have aggregates. For example, in
DLV, we may have aggregates such as #count. We show the rewriting for constraints
with #count.

For a constraint:

r3 : false :−#count{X : V (X), B1(X, Ȳ2), . . . , Bn(X, Ȳn)} = 0.

First we have the complement rule Ṽ for V , and add choice rules of “V (X) :−
not Ṽ (X), domain(X)” and “Ṽ (X) :− not V (X), domain(X)”. Then we rewrite the
constraint to a soft constraint where Pi is the provenance of Bi(X,Yi) for 1 ≤ i ≤
n and add two predicates POK and OK which stand for Possibly OK and OK (i.e.
consistency), respectively:

POK(r3, PṼ ⊗ P1 ⊗ . . .⊗ Pn) :− Ṽ (X,PṼ ),

B1(X, Ȳ1, P1), B2(X, Ȳ2, P2), . . . , Bn(X, Ȳn, Pn).

OK(r3) :− V (X),

B1(X, Ȳ1), B2(X, Ȳ2), . . . , Bn(X, Ȳn).

NOK(r3 ⊗ P ) :− POK(r3, P ), not OK(r3).

We only show the rewriting for rules with aggregates of such a format because in
this is the only format with aggregate we encounter in our real world application of
EULER/X toolkit. Rules of other format can also be rewritten similarly.

2 It is the same as times operator as in provenance semiring [13].



A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning 133

r1

NOK(r1 (r2 r3))

r2

r2 r3

r3 r1

r1 r4 r2

NOK(r2 (r1 r4))

r4

Fig. 1. Example diagnosis proof trees

4.3 Generation of Diagnosis Proof Tree

With the rewritten rules enriched with annotations, one can query answer set program-
ming system all the possible answers for NOK and obtain a boolean expression for each
possible answer. For instance, suppose the possible answers for NOK is

{NOK(r1 ⊗ (r2 ⊗ r3)),NOK(r2 ⊗ (r1 ⊗ r4))}
The boolean expressions for NOK are r1 ⊗ (r2 ⊗ r3) and r2 ⊗ (r1 ⊗ r4)). For each
boolean expression, we construct its boolean expression tree [1] which is a diagnosis
proof tree for the inconsistency. We have the two diagnosis proof trees shown in Fig. 1.

A diagnosis proof tree shows how different constraints together lead to the inconsis-
tency. The rule-rewritting based white-box approach is shown in Algorithm 3. We will
show an example of diagnosis proof tree in the Application section (Section 6).

Algorithm 3. White-Box Approach
Input: System description SD, a set of constraints C
Output: All diagnosis proof trees

ComputeAllProofTrees(SD, C):
1: Encode SD and C in Datalog rules
2: Rewrite Datalog rules to ones with provenance
3: Run ASP reasoner to get boolean expressions for NOK
4: Construct diagnosis proof trees using the boolean expressions

5 Mixed Black-Box / White-Box Approach

It is hard to compare black-box approaches and white-box provenance approach in the
sense that they generate different outputs for model-based diagnosis problem. Black-
box approaches generate MIS whereas white-box approach generates proof trees.
Note that the leaf nodes of a proof tree together forms a set of constraints which is
either a MIS or a superset of a MIS . Starting from these constraints, a MIS may be
obtained by running HST algorithm.
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We propose the hybrid approach, in which white-box approach serves as a filter
to shrink the universe (constraint candidates for MIS) when generating MIS. This
hybrid approach is shown in Algorithm 4.

Algorithm 4. Hybrid Approach
Input: System description SD, a set of constraints C
Output: All diagnoses (MIS)

ComputeAllMISHybrid(SD, C):
1: Ts ← ComputeAllProofTrees(SD, C)
2: C’ ← set of leaf nodes of the proof trees Ts
3: return ComputeAllMIS(SD,C’)

If the size of the input constraint set C is large, white-box approach could poten-
tially shrink the constraint set to a much smaller one C′ for HST Algorithm and thus
reduce the running time of the HST algorithm. In the following sections, we will show
the application of different diagnosis algorithms in EULER/Xtoolkit and compare the
performance between black-box approach and hybrid approach for generating MIS in
the benchmarks.

Relation Between All These Approaches. We show the relation between different
approaches in Fig. 2. A system (SD,C) is the initial input for different diagnosis
approaches. We will also show how to compute MIS / MCS from each other in
Section 6.2.

6 Real World Application – EULER/X

EULER/X [6] is a logic-based toolkit for aligning multiple biological taxonomies. A
taxonomy is an isa hierarchy made up of taxonomic concepts. An articulation de-
fines a relation between taxonomic concepts using union (∪) and Region Connection
Calculus (RCC-5) relations. RCC-5 includes five basic relationships that compare the
extensions of taxonomic concepts: viz. (1) congruence (==), E1 == E2 meaning that
two taxonomic concepts E1 and E2 are equivalent; (2) proper inclusion (>), E1 > E2

meaning that E1 properly includes E2; (3) inverse proper inclusion (<), E1 < E2 mean-
ing that E1 is properly included in E2; (4) overlap (><), E1 >< E2 meaning that E1 is
overlapping with E2; (5) exclusion (!), E1 ! E2 meaning that E1 and E2 have an empty
intersection. Ambiguity can be asserted using the disjunction ‘or’. isa in the taxonomy
can be treated as < or ==. The toolkit ingests the taxonomies (T1, T2), a set of ar-
ticulations [12,11] (A), and takes into account three additional constraints (TC): (1)
nonemptiness - a given concept has minimally one representing instance; (2) sibling
disjointness - two given child concepts of a parent concept are exclusive of each other;
and (3) coverage - a given parent concept is completely circumscribed by the union of
its children concepts. The toolkit then generates merged taxonomies.

A taxonomy alignment can be treated as a system (SD,C) where two input tax-
onomies and taxonomic constraints together are the system description, i.e., SD =
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SD+C

Logarithmic Extraction
(Algorithm 1)

HST (Algorithm 2)

White-box Approach
(Algorithm 3)

Hybrid Approach
(Algorithm 4)

1-MIS

All MIS

All MCS

  Proposition 4

Proof Tree

Fig. 2. Relations between different approaches (boxes: existing approaches; rounded boxes: new
approaches; bold edges: how our hybrid approach works from end to end)

T1 ∪ T2 ∪ TC, and input articulations are the constraints C. As mentioned in Sec-
tion 1, a taxonomy alignment may yield inconsistent results because articulations may
be wrongly asserted by domain experts due to various reasons. To analyze the incon-
sistency of a taxonomy alignment, EULER/X toolkit applies different diagnosis ap-
proaches including black-box approach, white-box approach, and hybrid approach.

6.1 Example

Example 1. Suppose we have two minimal taxonomies as shown on the left in Fig. 3.
Taxonomy 1 has three concepts 1.A, 1.B, and 1.C. The concept hierarchy is modeled
by the two “is-a” constraints: c0: “1.B isa 1.A”, and c1: “1.C isa 1.A”. We also have
a coverage constraint c2: “1.A = 1.B+ 1.C”; and a sibling disjointness constraint c3:
“1.B disjoint 1.C”. Taxonomy 2 has a single concept 2.D. There are three articulations
between the taxonomies: c4: “1.A > 2.D”, c5: “1.B ! 2.D”, and c6: “1.C ! 2.D”. By run-
ning EULER/X, we find that this alignment is inconsistent.

With HST algorithm, we find that there is only one diagnosis (MIS ) which is
“c4 : 1.A> 2.D, c5 : 1.B ! 2.D, c6 : 1.C ! 2.D”. White-box provenance approach gener-
ates one proof tree, which is shown as Fig. 3. Domain expert may interpret the proof tree
though not that obvious that c2 ⊗ c5 ⊗ c6 means “1.A ! 2.D”, and NOK(c4) means that
c2, c5, c6 and c4 together introduce the inconsistency, i.e., “1.A ! 2.D” and “1.A> 2.D”
cannot both hold. The set of leaf nodes of the proof tree is {c2, c4, c5, c6}. Since c2 is a
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1.A

2.D

>

1.B

isa

!
1.C

isa

!

Fig. 3. Input alignment (left) and proof tree (right) for Example 1. From constraints c2, c5, and
c6 it follows that “1.A ! 2.D”, which is inconsistent with the articulation c4: “1.A> 2.D”

taxonomic constraint which is part of system description, we get a set of {c4, c5, c6} as
constraint candidates for MIS .

6.2 Diagnostic Lattice

With all diagnoses MIS (and MCS), it may be helpful to visualize all diagnoses.
EULER/X toolkit visualizes diagnoses as in a lattice. Consider the 2n combinations
of n articulations, we can build a lattice where an edge means there is a direct subset
relation between the two sets, i.e., there is an edge (A,B) iff A � B and |B −A| = 1.
We call it Diagnostic Lattice. For example, the lattices with articulation set size of 2, 3,
4 are shown in Fig. 4.

In the diagnostic lattice, we color a node red if the set of articulations it represents
is inconsistent; otherwise, color it green. Recall Fact 1 and 2, which we could call
Inconsistency Propagation (red edges) and Consistency Propagation (green edges), re-
spectively: Any ancestor (superset) of an inconsistent (red) node is also inconsistent;
similarly, any descendent (subset) of a consistent (green) node is also consistent. MIS
is essentially a red node whose parents are green; MCS is a green node whose children
are red. We color MIS , MCS solid red, solid green, respectively. We color an edge
as dashed red if it applies Red Propagation Rule; color it as dashed green if it applies
Green Propagation Rule; color it solid blue if it applies neither of the two rules. For
example, we have four articulations {a, b, c, d}, among which {a, b}, {a, c}, and {d}
are MIS , we have the colored lattice in Fig. 5.

Actually we can represent both MIS and MCS with boolean functions. Using the
solid red nodes, we get NOK({a, b, c, d}) = (a ∧ b) ∨ (a ∧ c) ∨ d. Using the solid
green nodes, we get OK({a, b, c, d}) = a∨ (b∧ c). We found that NOK({a, b, c, d}) =
¬OK({a, b, c, d}).

Example 2. Fig. 6 shows a more complex example with 12 articulations, so the number
of combinations of articulations (the number of the nodes in lattice) is 212, which is
4096. By using our lattice approach, we get 5 MIS and 7 MCS among all 4096 com-
binations, together with the clusters of other inconsistent or consistent nodes, shown in
Fig. 7.
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Fig. 4. Lattices with articulation set size of 2, 3, and 4

{a,b,c,d}

{a,b,c} {a,b,d}

{a,b}

{a,c,d}

{a,c} {a,d}

{b,c,d}

{b,d} {c,d}

{d}{a}

{b,c}

{b} {c}

{}

Fig. 5. Diagnostic lattice. (solid red octagon: MIS , solid green rounded box: MCS )
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Fig. 6. Input for Example 2 (Green: Taxonomy1, Yellow: Taxonomy2, a1-a12: Articulations)
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7,8,10,

11

10

All Other 
Inconsistent 
Articulations

101010

66

3 3

2 2 22 2

Fig. 7. MIS (Octagon) and MCS (Rounded Box) for Example 2. All other non-minimal incon-
sistent subsets and non-maximal consistent subsets are collapsed as “clouds”, the labels of edges
show the path length from MIS /MCS to the top/bottom of the lattice.

7 Implementation and Benchmarks

We implemented black-box, white-box, and hybrid approach combining black-box /
white-box approaches in EULER/X toolkit3. We use different answer set programming
engine in our implementation, such as DLV, Potassco. We do benchmarks using both

3 It is an open-source toolkit which can be downloaded in
http://bitbucket.org/eulerx/euler-project

http://bitbucket.org/eulerx/euler-project
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Fig. 8. Average running time using DLV (top) and Potassco (down) as underlying reasoners

real-world and artificial examples on all three approaches, of which white-box approach
generates proof trees, the other two generate all diagnoses (MIS). The two approaches
we benchmarked to generate MIS are the Horridge’s black-box approach [14] (HST
Algorithm with Logarithmic Extraction Algorithm as its subroutine) and the hybrid
approach.

We measure in our benchmarks average running time of different approaches using
increasingly larger input datasets generated by an artificial inconsistent dataset gener-
ator. An artificial dataset includes two isomorphic taxonomies T1 and T2 each with n
taxonomic concepts and a set of n articulations. Assuming ϕ is the isomorphism map-
ping4 from T1 to T2, such that for two taxonomic concepts T1.A and T1.B such that
T1.A isa T1.B, we have ϕ(T1.A) isa ϕ(T1.B). We say that T1.C and ϕ(T1.C) is a
pair, and these n articulations are between the n pairs. We keep the ratio of problematic
articulations to be 10% in the artificial examples. All tests run on an 8-core, 32GB-
memory Linux server. The average running time is shown as in Fig. 8.

4 There could be many of such isomorphism mappings, but we only consider one of them.
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Fig. 8 shows that using DLV and Potassco as underlying reasoners:

1. White-box approach runs much faster than either hybrid approach or black-box
approach;

2. Hybrid approach runs around twice fast compared to black-box approach;

The reason is simple, white-box approach invokes the reasoner only once whereas
the other two invokes reasoner multiple times. Also, hybrid approach runs faster than
black-box approach because white-box approach significantly shrinks the candidate
constraints for inconsistency, which results in the number invocations to reasoner de-
creases. However, notice that white-box approach generates proof trees and does not
generate all diagnoses. The new hybrid approach improves the diagnosis generation
significantly compared to the existing black-box approach.

8 Conclusion and Future Work

We discuss different approaches for general model-based diagnosis, including existing
black-box approach [14], and new approaches proposed in this paper, white-box prove-
nance approach, and hybrid approach combining black-box and white-box provenance.
white-box provenance is a new approach which rewrite answer set programming rules
(including safe, non-safe and with aggregates) to generate diagnosis proof trees. Hybrid
approach combines both black-box and white-box provenance and generates all diag-
noses. We implemented all these approaches in the application of EULER/X toolkit for
taxonomy alignment. Benchmarks show that our hybrid approach runs twice as fast as
the existing black-box approach of HST algorithm. Future work includes understanding
the relation between the white-box diagnosis proof trees and MIS and optimizing the
generation of MIS .
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